First-Principles Computation of Microscopic Mechanical Properties and Atomic Migration Behavior for Al4Si Aluminum Alloy

Author:

Huang Jingtao1,Xue Jingteng1,Li Mingwei2ORCID,Cheng Yuan3,Lai Zhonghong4,Hu Jin1,Zhou Fei5,Qu Nan1,Liu Yong12,Zhu Jingchuan1ORCID

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China

3. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China

4. Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China

5. State Key Laboratory for Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

In this paper, the interfacial behavior and the atom diffusion behavior of an Al4Si alloy were systematically investigated by means of first-principles calculations. The K-points and cutoff energy of the computational system were determined by convergence tests, and the surface energies for five different surfaces of Al4Si alloys were investigated. Among the five surfaces investigated for Al4Si, it was found that the (111) surface was the surface with the lowest surface energy. Subsequently, we investigated the interfacial stability of the (111) surface and found that there were two types of interfaces, the Al/Al interface and the Al/Si interface. The fracture energies and theoretical strengths of the two interfaces were calculated; the results show that the Al/Al interface had the highest interfacial strength, and the calculation of their electronic results explained the above phenomenon. Subsequently, we investigated the diffusion and migration behavior of Si atoms in the alloy system, mainly in the form of vacancies. We considered the diffusion of Si atoms in vacancies of Al and Si atoms, respectively; the results showed that Si atoms are more susceptible to diffusive migration to Al atomic vacancies than to Si atomic vacancies. The results of the calculations on the micromechanics of aluminum alloys, as well as the diffusion migration behavior, provide a theoretical basis for the further development of new aluminum alloys.

Funder

Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3