Analysis on the Key Parameters to Predict Flow Stress during Ausforming in a High-Carbon Bainitic Steel

Author:

Wang Lifan1,Hu Haijiang1ORCID,Wang Wei2,He Ping1,Li Zhongbo3,Xu Guang1ORCID

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

2. Baosteel Research Institute, 889 Fujin Rd., Shanghai 201900, China

3. Nanyang Hanye Special Steel Co., Ltd., Nanyang 474500, China

Abstract

Since flow stress is an important parameter in the processing and application of metallic materials, it is necessary to trace the flow stress during austenite deformation. Thermal compression deformation of austenite in a high-strength bainitic steel was conducted using a Gleeble-3500 thermo-mechanical simulator, within the deformation temperature range of 400 °C~900 °C. By analyzing the stress–strain curves and strain-hardening exponent, the effects of strain hardening and dynamic recovery on the dislocation density of the material during the thermal processing were considered in the present work. Based on the general form of the Kocks–Mecking–Estrin (KME) model, the effects of deformation temperature and strain on the key parameters of the model were clarified. Differing from other work which commonly terms m (strain rate sensitivity exponent) and k2 (dimensionless parameters for dynamic recovery) as constants, the current models consider the quantitative relationship between key parameters and deformation temperature and strain. The results show that m is an exponential function related to temperature and strain, which decreases with the increase in strain. Meanwhile, k2 is a temperature-dependent polynomial function that increases as the deformation temperature increases. Finally, a modified constitutive KME model was proposed to predict the austenitic plastic stress with strain. Using established m-ε and k2-T models, the predicted curves are in good agreement with the experimental measurements.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3