Affiliation:
1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract
FeSiAl flakes were fabricated by vibrating ball milling the FeSiAl ribbons. And the microwave absorption properties of FeSiAl flakes were improved by doping the multi-wall carbon nanotubes (MWCNTs) with different mass concentrations. The results show that the FeSiAl/MWCNT composites exhibit significantly improved microwave absorption performance with advantages of strong and broadband absorption in the L-band and S-band. In particular, the reflection loss (RL) of the FeSiAl/MWCNT2 composite reaches −7.4 dB at 1.0 GHz, whereupon, through the electromagnetic simulation software CST Microwave Studio, FeSiAl/MWCNT2 all-dielectric metamaterial absorbers (ADMMAs) were macroscopically designed, achieving an ultra-wideband absorption (RL ≤ −10 dB) of 14.4 GHz (3.6~18.0 GHz). It is recognized that the standing wavelength resonance and diffraction effect are responsible for absorbing electromagnetic waves, and the broadband absorption is improved via dielectric dispersion; their synergistic effect makes the ADMMAs exhibit good microwave absorption performance. This work provides a useful method for designing microwave absorption materials with broadband absorption.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献