Study on Reactive Air Brazing of p-SiO2 Ceramic with Ag-xCuO Filler Metal

Author:

Chen Yongwei1,Ma Qiang123,He Peng2

Affiliation:

1. Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003, China

2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

3. Zhejiang Seleno Science and Technology Co., Ltd., Jinhua 321016, China

Abstract

Reactive air brazing of porous SiO2 ceramic (p-SiO2) was achieved using Ag-CuO filler metal. When brazing p-SiO2, two main problems existed. Firstly, the wettability of the Ag filler metal on the surface of p-SiO2 was poor. Secondly, the residual stress caused by the mismatch of the coefficient of thermal expansion was high in the joint. In order to solve these problems, the effects of CuO contents on the p-SiO2 brazed joint were analyzed. In a wetting experiment, the addition of CuO significantly improved the wettability of the Ag-CuO/p-SiO2 system. With the content of CuO increasing, the contact angle decreased from 90° to 0°. In addition, when the content of CuO increased to 0.5 mol%, the contact angle decreased from 90° to 52°. Then, during brazing p-SiO2 with the Ag-xCuO filler metal, the typical interfacial microstructure of the joints brazed at 1000 °C for 30 min was p-SiO2 ceramic/Ag (s,s) + SiO2 + CuO/Ag (s,s)/Ag (s,s) + SiO2 + CuO/p-SiO2 ceramic. Meanwhile, Ag-CuO infiltrated into the p-SiO2 ceramic and an infiltration layer formed. The infiltration layer was composed of Ag (s,s) + SiO2 + CuO and the infiltration layer was conductive to form a good gradient transition of the coefficient of thermal expansion (CTE). Then, the residual stress in the joint was released and the shear strength improved. In addition, with the content of CuO increasing, the depth of the infiltration layer increased. Furthermore, when the content of CuO was 0.5 mol%, the maximum shear strength of the joint was 55 MPa.

Funder

National Natural Science Foundation of China

State Key Laboratory of Advanced Welding and Joining

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3