SPINK1 Overexpression Correlates with Hepatocellular Carcinoma Treatment Resistance Revealed by Single Cell RNA-Sequencing and Spatial Transcriptomics

Author:

Yang Chunyuan1,Guo Limei1,Du Juan1,Zhang Qiulu1,Zhang Lingfu2

Affiliation:

1. Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China

2. Department of General Surgery, Peking University Third Hospital, Beijing 100191, China

Abstract

Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Shu Fan Education and Research Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3