Enhancing Handover for 5G mmWave Mobile Networks Using Jump Markov Linear System and Deep Reinforcement Learning

Author:

Chiputa MasotoORCID,Zhang MinglongORCID,Ali G. G. Md. NawazORCID,Chong Peter Han JooORCID,Sabit Hakilo,Kumar ArunORCID,Li Hui

Abstract

The Fifth Generation (5G) mobile networks use millimeter waves (mmWaves) to offer gigabit data rates. However, unlike microwaves, mmWave links are prone to user and topographic dynamics. They easily get blocked and end up forming irregular cell patterns for 5G. This in turn causes too early, too late, or wrong handoffs (HOs). To mitigate HO challenges, sustain connectivity, and avert unnecessary HO, we propose an HO scheme based on a jump Markov linear system (JMLS) and deep reinforcement learning (DRL). JMLS is widely known to account for abrupt changes in system dynamics. DRL likewise emerges as an artificial intelligence technique for learning highly dimensional and time-varying behaviors. We combine the two techniques to account for time-varying, abrupt, and irregular changes in mmWave link behavior by predicting likely deterioration patterns of target links. The prediction is optimized by meta training techniques that also reduce training sample size. Thus, the JMLS–DRL platform formulates intelligent and versatile HO policies for 5G. When compared to a signal and interference noise ratio (SINR) and DRL-based HO scheme, our HO scheme becomes more reliable in selecting reliable target links. In particular, our proposed scheme is able to reduce wasteful HO to less than 5% within 200 training episodes compared to the DRL-based HO scheme that needs more than 200 training episodes to get to less than 5%. It supports longer dew time between HOs and high sum rates by ably averting unnecessary HOs with almost half the HOs compared to a DRL-based HO scheme.

Funder

Auckland University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3