Abstract
Preservation of privacy of users’ personal data has always been a critical issue to deal with. This issue in the Internet of Things (IoT), which facilitates millions of applications, has become even more challenging. Currently, several approaches and methods are available to safeguard privacy but each of them suffers from one or more anomalies. In particular, Trusted Third-Party approach relies on the trust of a third-party server, Cooperation needs the trust of other peers, Obfuscation is known to return inaccurate results, and Dummy generates too much overhead. Moreover, these and most of the other well-known approaches deal only with specific types of applications linked to the location-based services. In this paper, we present two new methods, namely: Blind Third Party (BTP) and Blind Peers ( B L P ), and combine them to form a new one to be known as the Blind Approach ( B L A ). With the help of simulation results we shall demonstrate the effectiveness and superiority of B L A over the other available methods. The simulation results also exhibit that B L A is free from all the existing problems of the other approaches. However, B L A causes a slight increase in the average (response) time, which we consider to be a minor issue. We shall also discuss the capability and superiority of the Blind Approach in the cases of E-health, Smart Transportation, and Smart Home systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献