Edge Computing, IoT and Social Computing in Smart Energy Scenarios

Author:

Sittón-Candanedo InésORCID,Alonso Ricardo S.ORCID,García ÓscarORCID,Muñoz LiliaORCID,Rodríguez-González SaraORCID

Abstract

The Internet of Things (IoT) has become one of the most widely research paradigms, having received much attention from the research community in the last few years. IoT is the paradigm that creates an internet-connected world, where all the everyday objects capture data from our environment and adapt it to our needs. However, the implementation of IoT is a challenging task and all the implementation scenarios require the use of different technologies and the emergence of new ones, such as Edge Computing (EC). EC allows for more secure and efficient data processing in real time, achieving better performance and results. Energy efficiency is one of the most interesting IoT scenarios. In this scenario sensors, actuators and smart devices interact to generate a large volume of data associated with energy consumption. This work proposes the use of an Edge-IoT platform and a Social Computing framework to build a system aimed to smart energy efficiency in a public building scenario. The system has been evaluated in a public building and the results make evident the notable benefits that come from applying Edge Computing to both energy efficiency scenarios and the framework itself. Those benefits included reduced data transfer from the IoT-Edge to the Cloud and reduced Cloud, computing and network resource costs.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proof of concept: an ICT system framework for local energy markets based on open-source solutions;The 15th ACM International Conference on Future and Sustainable Energy Systems;2024-05-31

2. Edge-Cloud Architectures for Hybrid Energy Management Systems: A Comprehensive Review;IEEE Sensors Journal;2024-05-15

3. Systematic Mapping Study on Edge and Fog Computing in Smart Cities: A Comprehensive Review;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

4. Collaborative drivers’ networks for the development of Smart Energy environments;Sustainable Energy Technologies and Assessments;2024-05

5. Edge AI for Internet of Energy: Challenges and perspectives;Internet of Things;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3