A Multi-Scale Dehazing Network with Dark Channel Priors

Author:

Yang Guoliang1,Yang Hao1,Yu Shuaiying1,Wang Jixiang1,Nie Ziling1

Affiliation:

1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

Image dehazing based on convolutional neural networks has achieved significant success; however, there are still some problems, such as incomplete dehazing, color deviation, and loss of detailed information. To address these issues, in this study, we propose a multi-scale dehazing network with dark channel priors (MSDN-DCP). First, we introduce a feature extraction module (FEM), which effectively enhances the ability of feature extraction and correlation through a two-branch residual structure. Second, a feature fusion module (FFM) is devised to combine multi-scale features adaptively at different stages. Finally, we propose a dark channel refinement module (DCRM) that implements the dark channel prior theory to guide the network in learning the features of the hazy region, ultimately refining the feature map that the network extracted. We conduct experiments using the Haze4K dataset, and the achieved results include a peak signal-to-noise ratio of 29.57 dB and a structural similarity of 98.1%. The experimental results show that the MSDN-DCP can achieve superior dehazing compared to other algorithms in terms of objective metrics and visual perception.

Funder

Jiangxi Provincial Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3