High-Speed Rail Tunnel Panoramic Inspection Image Recognition Technology Based on Improved YOLOv5

Author:

Duan Yixin1,Qiu Su1,Jin Weiqi1,Lu Taoran1,Li Xingsheng1

Affiliation:

1. MOE Key Laboratory of Optoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China

Abstract

In order to meet the fast and accurate automatic detection requirements of equipment maintenance in railway tunnels in the era of high-speed railways, as well as adapting to the high dynamic, low-illumination imaging environment formed by strong light at the tunnel exit, we propose an automatic inspection solution based on panoramic imaging and object recognition with deep learning. We installed a hyperboloid catadioptric panoramic imaging system on an inspection vehicle to obtain a large field of view as well as to shield the high dynamic phenomena at the tunnel exit, and proposed a YOLOv5-CCFE object detection model based on railway equipment recognition. The experimental results show that the mAP@0.5 value of the YOLOv5-CCFE model reaches 98.6%, and mAP@0.5:0.95 reaches 68.9%. The FPS value is 158, which can meet the automatic inspection requirements of railway tunnel equipment along the line and has high practical application value.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3