Transfer Learning in Trajectory Decoding: Sensor or Source Space?

Author:

Srisrisawang Nitikorn1ORCID,Müller-Putz Gernot R.12ORCID

Affiliation:

1. Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria

2. BioTechMed Graz, 8010 Graz, Austria

Abstract

In this study, across-participant and across-session transfer learning was investigated to minimize the calibration time of the brain–computer interface (BCI) system in the context of continuous hand trajectory decoding. We reanalyzed data from a study with 10 able-bodied participants across three sessions. A leave-one-participant-out (LOPO) model was utilized as a starting model. Recursive exponentially weighted partial least squares regression (REW-PLS) was employed to overcome the memory limitation due to the large pool of training data. We considered four scenarios: generalized with no update (Gen), generalized with cumulative update (GenC), and individual models with cumulative (IndC) and non-cumulative (Ind) updates, with each one trained with sensor-space features or source-space features. The decoding performance in generalized models (Gen and GenC) was lower than the chance level. In individual models, the cumulative update (IndC) showed no significant improvement over the non-cumulative model (Ind). The performance showed the decoder’s incapability to generalize across participants and sessions in this task. The results suggested that the best correlation could be achieved with the sensor-space individual model, despite additional anatomical information in the source-space features. The decoding pattern showed a more localized pattern around the precuneus over three sessions in Ind models.

Funder

Graz University of Technology

European Research Council

Royal Thai Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3