Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes

Author:

Wang Lu1,Ouyang Zhongzhe1,Lin Xihong2

Affiliation:

1. Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA

Abstract

We investigate a semiparametric generalized partially linear regression model that accommodates missing outcomes, with some covariates modeled parametrically and others nonparametrically. We propose a class of augmented inverse probability weighted (AIPW) kernel–profile estimating equations. The nonparametric component is estimated using AIPW kernel estimating equations, while parametric regression coefficients are estimated using AIPW profile estimating equations. We demonstrate the doubly robust nature of the AIPW estimators for both nonparametric and parametric components. Specifically, these estimators remain consistent if either the assumed model for the probability of missing data or that for the conditional mean of the outcome, given covariates and auxiliary variables, is correctly specified, though not necessarily both simultaneously. Additionally, the AIPW profile estimator for parametric regression coefficients is consistent and asymptotically normal under the semiparametric model defined by the generalized partially linear model on complete data, assuming that the missing data mechanism is missing at random. When both working models are correctly specified, this estimator achieves semiparametric efficiency, with its asymptotic variance reaching the efficiency bound. We validate our approach through simulations to assess the finite sample performance of the proposed estimators and apply the method to a study that investigates risk factors associated with myocardial ischemia.

Publisher

MDPI AG

Reference44 articles.

1. McCullagh, P., and Nelder, J. (1989). Generalized Linear Models, Chapman & Hall.

2. Quasi-Likelihood Estimation in Semiparametric Models;Severini;J. Am. Stat. Assoc.,1994

3. Hastie, T., and Tibshirani, R. (1990). Generalized Additive Models, Chapman & Hall/CRC.

4. Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions;Fan;J. Am. Stat. Assoc.,1995

5. Generalized Partially Linear Single-Index Models;Carroll;J. Am. Stat. Assoc.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3