Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions

Author:

Lamboni Matieyendou12

Affiliation:

1. Department DFR-ST, University of Guyane, 97346 Cayenne, France

2. 228-UMR Espace-Dev, University of Guyane, University of Réunion, IRD, University of Montpellier, 34090 Montpellier, France

Abstract

Computing cross-partial derivatives using fewer model runs is relevant in modeling, such as stochastic approximation, derivative-based ANOVA, exploring complex models, and active subspaces. This paper introduces surrogates of all the cross-partial derivatives of functions by evaluating such functions at N randomized points and using a set of L constraints. Randomized points rely on independent, central, and symmetric variables. The associated estimators, based on NL model runs, reach the optimal rates of convergence (i.e., O(N−1)), and the biases of our approximations do not suffer from the curse of dimensionality for a wide class of functions. Such results are used for (i) computing the main and upper bounds of sensitivity indices, and (ii) deriving emulators of simulators or surrogates of functions thanks to the derivative-based ANOVA. Simulations are presented to show the accuracy of our emulators and estimators of sensitivity indices. The plug-in estimates of indices using the U-statistics of one sample are numerically much stable.

Publisher

MDPI AG

Reference64 articles.

1. A Stochastic Approximation Method;Robbins;Ann. Math. Stat.,1951

2. Fabian, V. (1971). Stochastic approximation. Optimizing Methods in Statistics, Elsevier.

3. Nemirovsky, A., and Yudin, D. (1983). Problem Complexity and Method Efficiency in Optimization, Wiley & Sons.

4. Optimal accuracy orders of stochastic approximation algorithms;Polyak;Probl. Peredachi Inf.,1990

5. On global implicit function theorem;Cristea;J. Math. Anal. Appl.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3