Optimization and Stability Assessment of Monochamus alternatus Antimicrobial Peptide MaltAtt-1 in Komagataella phaffii GS115 for the Control of Pine Wood Nematode

Author:

Jiang Di12,Xu Xuhuizi12,Wang Zeguang12,Yu Chao1,Wang Zeqing1,Xu Yuda12,Chu Xu12,Li Ming1,Zhang Feiping12,Hu Xia12

Affiliation:

1. Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

MaltAtt-1 is an antimicrobial peptide isolated from Monochamus alternatus with nematocidal activity against pine wood nematode. In this study, a eukaryotic expression system based on Komagataella phaffii GS115 was established, and its secretory expression of MaltAtt-1 was realized. The basic properties and secondary and tertiary structures of the antimicrobial peptide MaltAtt-1 were identified by bioinformatics analysis. MaltAtt-1 is a hydrophilic stable protein, mainly composed of an α-helix (Hh), β-folds (Ee), and irregular curls (Cc). The optimal fermentation conditions for MaltAtt-1 were determined by a single-factor test and the Box–Behnken response surface method, including an induction time of 72 h, induction temperature of 30 °C, culture medium of pH 7.6, methanol volume fraction of 2.0%, and an initial glycerol concentration of 1%. The stability of MaltAtt-1 indicated its resistant to UV irradiation and repeated freezing and thawing, but the antibacterial activity decreased significantly under the influence of high temperature and a strong acid and base, and it decreased significantly to 1.1 cm and 0.83 cm at pH 2.0 and pH 10.0, respectively. The corrected mortality of B. xylophilus achieved 71.94% in 3 h at a concentration of 300 mg·L−1 MaltAtt-1 exposure. The results provide a theoretical basis for the antimicrobial peptide MaltAtt-1 to become a new green and efficient nematicide.

Funder

National Natural Science Foundation of China

National Key R & D Program of China

Natural Science Foundation of Fujian Province

Science Innovation Foundation of Fujian Agriculture and Forestry University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3