Effects of Ginsenoside Rb1 on the Crosstalk between Intestinal Stem Cells and Microbiota in a Simulated Weightlessness Mouse Model

Author:

Zong Beibei1,Wang Jingyi23,Wang Kai23,Hao Jie23,Han Jing-Yan1,Jin Rong23ORCID,Ge Qing123

Affiliation:

1. Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China

2. Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China

3. NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China

Abstract

Exposure to the space microenvironment has been found to disrupt the homeostasis of intestinal epithelial cells and alter the composition of the microbiota. To investigate this in more detail and to examine the impact of ginsenoside Rb1, we utilized a mouse model of hindlimb unloading (HU) for four weeks to simulate the effects of microgravity. Our findings revealed that HU mice had ileum epithelial injury with a decrease in the number of intestinal stem cells (ISCs) and the level of cell proliferation. The niche functions for ISCs were also impaired in HU mice, including a reduction in Paneth cells and Wnt signaling, along with an increase in oxidative stress. The administration of Rb1 during the entire duration of HU alleviated the observed intestinal defects, suggesting its beneficial influence on epithelial cell homeostasis. Hindlimb unloading also resulted in gut dysbiosis. The supplementation of Rb1 in the HU mice or the addition of Rb1 derivative compound K in bacterial culture in vitro promoted the growth of beneficial probiotic species such as Akkermansia. The co-housing experiment further showed that Rb1 treatment in ground control mice alone could alleviate the defects in HU mice that were co-housed with Rb1-treated ground mice. Together, these results underscore a close relationship between dysbiosis and impaired ISC functions in the HU mouse model. It also highlights the beneficial effects of Rb1 in mitigating HU-induced epithelial injury by promoting the expansion of intestinal probiotics. These animal-based insights provide valuable knowledge for the development of improved approaches to maintaining ISC homeostasis in astronauts.

Funder

the National Natural Science Foundation of China

the National Key R&D Program of China

the Beijing Life Science Academy

the Beijing Natural Science Foundation

the Foundation for Innovative Research Groups of the National Natural Science Foundation of China

the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences

the Key Support Project of GuoZhong Health Care of China General Technology Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3