Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics

Author:

Vargas-Casanova Yerly1ORCID,Bravo-Chaucanés Claudia Patricia1ORCID,Fuentes Samuel de la Cámara2ORCID,Martinez-Lopez Raquel3,Monteoliva Lucía3ORCID,Gil Concha3ORCID,Rivera-Monroy Zuly Jenny4ORCID,Costa Geison Modesti5ORCID,Castañeda Javier Eduardo García4ORCID,Parra-Giraldo Claudia Marcela13

Affiliation:

1. Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia

2. Proteomics Unit, Universidad Complutense de Madrid, 28040 Madrid, Spain

3. Microbiology and Parasitology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain

4. Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia

5. Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia

Abstract

Previous reports have demonstrated that the peptide derived from LfcinB, R-1-R, exhibits anti-Candida activity, which is enhanced when combined with an extract from the Bidens pilosa plant. However, the mechanism of action remains unexplored. In this research, a proteomic study was carried out, followed by a bioinformatic analysis and biological assays in both the SC5314 strain and a fluconazole-resistant isolate of Candida albicans after incubation with R-1-R. The proteomic data revealed that treatment with R-1-R led to the up-regulation of most differentially expressed proteins compared to the controls in both strains. These proteins are primarily involved in membrane and cell wall biosynthesis, membrane transport, oxidative stress response, the mitochondrial respiratory chain, and DNA damage response. Additionally, proteomic analysis of the C. albicans parental strain SC5314 treated with R-1-R combined with an ethanolic extract of B. pilosa was performed. The differentially expressed proteins following this combined treatment were involved in similar functional processes as those treated with the R-1-R peptide alone but were mostly down-regulated (data are available through ProteomeXchange with identifier PXD053558). Biological assays validated the proteomic results, evidencing cell surface damage, reactive oxygen species generation, and decreased mitochondrial membrane potential. These findings provide insights into the complex antifungal mechanisms of the R-1-R peptide and its combination with the B. pilosa extract, potentially informing future studies on natural product derivatives.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3