Hydrogen Bond Strengthens Acceptor Group: The Curious Case of the C–H···O=C Bond

Author:

Basu Kingshuk1ORCID,Brielle Esther S.2,Arkin Isaiah T.1ORCID

Affiliation:

1. Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190400, Israel

2. The Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190400, Israel

Abstract

An H-bond involves the sharing of a hydrogen atom between an electronegative atom to which it is covalently bound (the donor) and another electronegative atom serving as an acceptor. Such bonds represent a critically important geometrical force in biological macromolecules and, as such, have been characterized extensively. H-bond formation invariably leads to a weakening within the acceptor moiety due to the pulling exerted by the donor hydrogen. This phenomenon can be compared to a spring connecting two masses; pulling one mass stretches the spring, similarly affecting the bond between the two masses. Herein, we describe the opposite phenomenon when investigating the energetics of the C–H···O=C bond. This bond underpins the most prevalent protein transmembrane dimerization motif (GxxxG) in which a glycine Cα-H on one helix forms a hydrogen bond with a carbonyl in a nearby helix. We use isotope-edited FT-IR spectroscopy and corroborating computational approaches to demonstrate a surprising strengthening of the acceptor C=O bond upon binding with the glycine Cα-H. We show that electronic factors associated with the Cα-H bond strengthen the C=O oscillator by increasing the s-character of the σ-bond, lowering the hyperconjugative disruption of the π-bond. In addition, a reduction of the acceptor C=O bond’s polarity is observed upon the formation of the C–H···O=C bond. Our findings challenge the conventional understanding of H-bond dynamics and provide new insights into the structural stability of inter-helical protein interactions.

Funder

Binational Science Foundation

Israeli Ministry of Science, and the Israeli Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3