Chimeric Antigen Receptor T Cell Bearing Herpes Virus Entry Mediator Co-Stimulatory Signal Domain Exhibits Exhaustion-Resistant Properties

Author:

Nunoya Jun-ichi1,Imuta Nagisa1,Masuda Michiaki1

Affiliation:

1. Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan

Abstract

Improving chimeric antigen receptor (CAR)-T cell therapeutic outcomes and expanding its applicability to solid tumors requires further refinement of CAR-T cells. We previously reported that CAR-T cells bearing a herpes virus entry mediator (HVEM)-derived co-stimulatory signal domain (CSSD) (HVEM-CAR-T cells) exhibit superior functions and characteristics. Here, we conducted comparative analyses to evaluate the impact of different CSSDs on CAR-T cell exhaustion. The results indicated that HVEM-CAR-T cells had significantly lower frequencies of exhausted cells and exhibited the highest proliferation rates upon antigenic stimulation. Furthermore, proliferation inhibition by programmed cell death ligand 1 was stronger in CAR-T cells bearing CD28-derived CSSD (CD28-CAR-T cells) whereas it was weaker in HVEM-CAR-T. Additionally, HVEM-CAR-T cells maintained a low exhaustion level even after antigen-dependent proliferation and exhibited potent killing activities, suggesting that HVEM-CAR-T cells might be less prone to early exhaustion. Analysis of CAR localization on the cell surface revealed that CAR formed clusters in CD28-CAR-T cells whereas uniformly distributed in HVEM-CAR-T cells. Analysis of CD3ζ phosphorylation indicated that CAR-dependent tonic signals were strongly sustained in CD28-CAR-T cells whereas they were significantly weaker in HVEM-CAR-T cells. Collectively, these results suggest that the HVEM-derived CSSD is useful for generating CAR-T cells with exhaustion-resistant properties, which could be effective against solid tumors.

Funder

Promotion and Mutual Aid Corporation for Private Schools of Japan

Dokkyo Medical University

JSPS KAKENHI Grant-in-Aid for Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3