Assessing the Efficacy of Protease Inactivation for the Preservation of Bioactive Amphibian Skin Peptides

Author:

Samgina Tatiana Yu.12,Mazur Dmitrii M.12ORCID,Lebedev Albert T.12ORCID

Affiliation:

1. Department of Materials Science, MSU-BIT University, Shenzhen 517182, China

2. Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

The skin of amphibians is a rich source of peptides with a wide range of biological activities. They are stored in secretory granules in an inactive form. Upon stimulation, they are secreted together with proteases into the skin. Once activated, they rapidly exert their biological effects, including fighting microorganisms and predators, while their excess is immediately destroyed by the released proteases. To keep bioactive peptides in their initial form, it is necessary to inhibit these enzymes. Several inhibitors for this purpose have previously been mentioned; however, there has not been any reliable comparison of their efficiency so far. Here, we studied the efficiency of methanol and hydrochloric and formic acids, as well as phenylmethylsulfonyl fluoride, in the inhibition of nine frog peptides with the known sequence, belonging to five families in the secretion of Pelophylax esculentus. The results demonstrated that methanol had the highest inhibitory efficiency, while phenylmethylsulfonyl fluoride was the least efficient, probably due to its instability in aqueous media. Possible cleavages between certain amino acid residues in the sequence were established for each of the inhibitors. These results may be helpful for future studies on the nature of proteases and on prediction of the possible cleavage sites in novel peptides.

Funder

RSF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3