Machine Learning-Driven Biomarker Discovery for Skeletal Complications in Type 1 Gaucher Disease Patients

Author:

Cebolla Jorge J.1ORCID,Giraldo Pilar23ORCID,Gómez Jessica4,Montoto Carmen1ORCID,Gervas-Arruga Javier5ORCID

Affiliation:

1. Takeda Farmacéutica España S.A., 28046 Madrid, Spain

2. FEETEG, 50006 Zaragoza, Spain

3. Hospital QuirónSalud Zaragoza, 50012 Zaragoza, Spain

4. Anaxomics Biotech S.L., 08007 Barcelona, Spain

5. Takeda Development Center Americas Inc., Cambridge, MA 02142, USA

Abstract

Type 1 Gaucher disease (GD1) is a rare, autosomal recessive disorder caused by glucocerebrosidase deficiency. Skeletal manifestations represent one of the most debilitating and potentially irreversible complications of GD1. Although imaging studies are the gold standard, early diagnostic/prognostic tools, such as molecular biomarkers, are needed for the rapid management of skeletal complications. This study aimed to identify potential protein biomarkers capable of predicting the early diagnosis of bone skeletal complications in GD1 patients using artificial intelligence. An in silico study was performed using the novel Therapeutic Performance Mapping System methodology to construct mathematical models of GD1-associated complications at the protein level. Pathophysiological characterization was performed before modeling, and a data science strategy was applied to the predicted protein activity for each protein in the models to identify classifiers. Statistical criteria were used to prioritize the most promising candidates, and 18 candidates were identified. Among them, PDGFB, IL1R2, PTH and CCL3 (MIP-1α) were highlighted due to their ease of measurement in blood. This study proposes a validated novel tool to discover new protein biomarkers to support clinician decision-making in an area where medical needs have not yet been met. However, confirming the results using in vitro and/or in vivo studies is necessary.

Funder

Takeda Farmacéutica España S.A.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3