Activation of the G Protein-Coupled Bile Acid Receptor TGR5 Modulates the HCP5/miR-139-5p/DDIT4 Axis to Antagonize Cervical Cancer Progression

Author:

Su Jia1ORCID,Zhao Yiqi1,Chen Wei-Dong23,Wang Yan-Dong1

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

2. Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010107, China

3. Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China

Abstract

A growing body of evidence indicates that the G protein-coupled bile acid receptor, TGR5, plays a critical role in multiple physiological processes ranging from metabolic disorders to cancers. However, the biological functions of TGR5 in cervical cancer (CC) have not been elucidated. Here, using TGR5 knockout mice, we found that a deficiency of TGR5 leads to greater sensitivity to the progression of cervical inflammation. Activation of TGR5 by its specific ligands significantly attenuated the malignant behavior of CC cells. In addition, we found that TGR5 can negatively modulate the expression of lncRNA HCP5 by blocking its transcription activation when mediated by p65. HCP5 was highly expressed in CC tissues, which was positively correlated with the poor prognosis of CC patients. HCP5 knockdown notably restrained CC cell proliferation, colony formation, and migration in vitro, and inhibited tumor growth in vivo. Furthermore, HCP5 can function as the molecular sponge for miR-139-5p to upregulate DNA damage-induced transcript 4 (DDIT4) in CC cells. Murine xenograft studies demonstrated that TGR5 suppressed the tumor formation of CC cells and downregulated HCP5 and DDIT4 while increasing miR-139-5p in the xenografts. Taken together, these findings, for the first time, indicate that TGR5 inhibits CC progression by regulating the HCP5/miR-139-5p/DDIT4 axis, suggesting that it may represent a novel and potent target for CC treatment.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3