Formation of a 3D Particle Array Actuated by Ultrasonic Traveling Waves in a Regular Polygon Resonator

Author:

Wan Fei,Xu Kai,Wang Hongcheng,Xu Haihao,Huang A’long,Bai Zihao,Zhang Linan,Wu Liqun

Abstract

Acoustic radiation forces have been extensively studied regarding static particles, cell patterning, and dynamic transportation. Compared with standing wave manipulation, traveling wave manipulation can be more easily modulated in real time and has no matching requirement between the size of the resonant cavity and the sound frequency. In this work, we present an efficient, multi-layer microparticle pattern technique in a 3D polygon cavity with a traveling bulk acoustic wave. There are two types of excitation modes: the interval excitation mode (IEM) and the adjacent excitation mode (AEM). We conducted theoretical and simulation analyses, and our results show that both of these modes can form particle arrays in the resonant cavity, which is in accordance with the experimental results. The array spacings in the IEM and AEM were about 0.8 mm and 1.3 mm, respectively, while the acoustic frequency was 1MHz. Double-layer particle patterns were arrayed by a double in the resonant cavity. The spacing between the two layers was set at 3.0 mm. The line spacings were about 0.4 mm in both layers. The line width was 0.2 mm, which was larger than the single layer. The results show that ultrasonic traveling waves are a feasible method to manipulate particles and cells that form 3D patterns in particle–fluid flows.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3