HybriDC: A Resource-Efficient CPU-FPGA Heterogeneous Acceleration System for Lossless Data Compression

Author:

Liu Puguang1,Wei Ziling1,Yu Chuan1ORCID,Chen Shuhui1

Affiliation:

1. College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Lossless data compression is a crucial and computing-intensive application in data-centric scenarios. To reduce the CPU overhead, FPGA-based accelerators have been proposed to offload compression workloads. However, most existing schemes have the problem of an imbalanced resource utilization and a poor practicability. In this paper, we propose HybriDC, an adaptive resource-efficient CPU-FPGA heterogeneous acceleration system for lossless data compression. Leveraging complementary advantages of the heterogeneous architecture, HybriDC provides a universal end-to-end compression acceleration framework with application compatibility and performance scalability. To optimize the hardware compression kernel design, we build a performance–resource model of the compression algorithm taking into account the design goal, compression performance, available resources, etc. According to the deduced resource-balanced design principle, the compression algorithm parameters are fine-tuned, which reduces 32% of the block RAM usage of the LZ4 kernel. In the parallel compression kernel implementation, a memory-efficient parallel hash table with an extra checksum is proposed, which supports parallel processing and improves the compression ratio without extra memory. We develop an LZ4-based HybriDC system prototype and evaluate it in detail. Our LZ4 compression kernel achieves state-of-the-art memory efficiency, 2.5–4× better than existing designs with comparable compression ratios. The evaluation of total resource utilization and end-to-end throughput demonstrates the excellent scalability of HybriDC. In power efficiency, the four-kernel HybriDC prototype achieves a threefold advantage over the standard LZ4 algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3