Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile

Author:

Holík Ladislav,Hlisnikovský Lukáš,Honzík RomanORCID,Trögl JosefORCID,Burdová Hana,Popelka JanORCID

Abstract

Fertilization is a key factor for sustaining productivity in agroecosystems. A long-term experiment in cambisol following periodical application of several types of fertilization has been running at the experimental site since 1954. In this study, we determined the impact of applied inorganic and/or organic fertilizers on the activity of soil enzymes and on the structure of microorganisms at depths of 0–30 cm and 30–60 cm. Single-factor comparison showed that use of inorganic and/or organic fertilizer had an insignificant effect on the activities of soil enzymes (at depths 0–30 cm and 30–60 cm) and also on the structure of microbial communities at both depths studied. Only soil respirations exhibited stimulation by combined fertilization. The results, irrespective of sampling depth (0–60 cm), showed that application of combined organic and inorganic fertilization stimulated the activity of glucosidases and use of inorganic fertilizer inhibited the activity of arylsulphatases. Respirations were stimulated by application of organic fertilizer and combined fertilization. Nevertheless, principal component analyses, which calculate with multidimensional data, revealed differences in samples treated by sole mineral fertilizer compared to other variants, especially in the lower layer. In general, our results indicate that use of combined fertilization may improve biological characteristics in deeper parts of soil profile and possibly increase biological activity in agroecosystems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3