Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites

Author:

Anand Praveena BindiganavileORCID,Lakshmikanthan Avinash,Gowdru Chandrashekarappa Manjunath PatelORCID,Selvan Chithirai PonORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID

Abstract

The development of the best properties in polyester composite from pineapple leaf fiber (PALF) as a reinforcing material is a subject of interest. The properties of PALF are reliant upon fiber length, wherein technical difficulties in production of long fibers and processing for better characteristics in polyester composites possess inherent challenges. The PALFs are subjected to silane treatment for altering fiber properties. This research attempts to analyze the impact of silane-treated PALF with varying fiber lengths (5, 10, 15, 20, and 25 mm) on the performance of natural fiber composites (NFC) properties. Open mold and hand lay-up techniques were employed to develop the polyester composites. The prepared PALF-based polyester composites were examined for different properties (impact, flexural, tensile strength, and wear rate). Coefficient of friction and wear studies are performed on the prepared composites subjected to different loads (10, 20, and 30 N) via a pin on disc test rig. Polymer composite fracture surfaces were analyzed to observe the interfacial bonding between fibers and matrix via scanning electron microscopy (SEM). SEM results showed that the application of silane treatment resulted in better surface topography (fiber length of 5–10 mm showed smooth surface resulted in crack proliferation possessing low fracture toughness of 15–32 MPa; whereas a 15–20 mm fiber length resulted in better fiber–matrix bonding, improving the fracture toughness from 42–55 MPa) as a result of change in chemical structure in PALF. The 20 mm length of PALF resulted in better properties (flexural, tensile, impact, and wear resistance) which are attributed to fiber–matrix interfacial bonding. These properties ensure the developed polymer composites can be applied to walls, building insulation, and artificial ceilings.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3