New Lie Symmetries and Exact Solutions of a Mathematical Model Describing Solute Transport in Poroelastic Materials

Author:

Cherniha Roman12ORCID,Davydovych Vasyl’2,Vorobyova Alla13

Affiliation:

1. School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK

2. Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka Street, 01004 Kyiv, Ukraine

3. Department of Intelligent Information, Petro Mohyla Black Sea National University, 68 Desantnykiv Street, 54000 Mykolaiv, Ukraine

Abstract

A one-dimensional model for fluid and solute transport in poroelastic materials (PEMs) is studied. Although the model was recently derived and some exact solutions, in particular steady-state solutions and their applications, were studied, special cases occurring when some parameters vanish were not analysed earlier. Since the governing equations are nonintegrable in nonstationary cases, the Lie symmetry method and modern tools for solving ODE systems are applied in order to construct time-dependent exact solutions. Depending on parameters arising in the governing equations, several special cases with new Lie symmetries are identified. Some of them have a highly nontrivial structure that cannot be predicted from a physical point of view or using Lie symmetries of other real-world models. Applying the symmetries obtained, multiparameter families of exact solutions are constructed, including those in terms of elementary and special functions (hypergeometric, Whittaker, Bessel and modified Bessel functions). A possible application of the solutions obtained is demonstrated, and it is shown that some exact solutions can describe (at least qualitatively) the solute transport in PEM. The obtained exact solutions can also be used as test problems for estimating the accuracy of approximate analytical and numerical methods for solving relevant boundary value problems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3