Abstract
Mexico is one of the countries with the highest emissions of greenhouse gases. In order to reduce the emission of contaminants due to fossil fuels, the state of Baja California has recently launched several research projects for the optimization of facilities for the exploitation of renewable sources, and in particular wave energy. In this work a first-level feasibility study of energy extraction from wave motion is presented for the Ensenada coast, along a complex distance of more than 200 km. The methodology proposed provides good spatial and temporal resolution for wave heights and periods calculation and consequently for the wave power. The methodology is based on the application of the coupled Simulated Waves Nearshore and Advanced Circulation (SWAN + ADCIRC) model for generation, propagation and dissipation of waves. To take into account the meteorological variability within a 21-year dataset, the Typical Meteorological Year method was applied. Results show that overall, the most persistent energy potential during the year is >2 kW/m, with peaks of 5 and 10 kW/m during few months. Given the theoretical energy potential calculated, the Ensenada coast could produce hundreds of GWh per year. The proposed methodology can be applied for the exploration of other coasts with energy potential.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference53 articles.
1. Grøn Energi—Vejen Mod et Dansk Energisystem uden Fossile bræNdsler er Udgivet af Klimakommissionen;Morthorst,2010
2. Resource Assessment for Wave Energy;Mackay,2012
3. Protocols for the Equitable Assessment of Marine Energy Converters;Ingram,2011
4. Wave Energy Resource Assessment and Characterization,2014
5. Wave Energy Resource Assessment for Exploitation—A Review
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献