New BaTi0.96Cu0.02X0.02O3 (X = V, Nb) Photocatalysts for Dyes Effluent Remediation: Broad Visible Light Response

Author:

Alsulaim Ghayah M.1

Affiliation:

1. Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

The problem of industrial dyes depollution has pushed the scientific research community to identify novel photocatalysts with high performance. Herein, new photocatalysts composed of BaTiO3, BaTi0.96Cu0.04O3, BaTi0.96Cu0.02V0.02O3 and BaTi0.96Cu0.02Nb0.02O3 powders were prepared by solid-state reaction. The structural analysis of the samples confirmed the formation of the BaTiO3 structure. The splitting of (002) and (200) planes verified the formation of the tetragonal phase. The XRD peaks shifted, and the unit cell volume expansion verified the substitution of the Ti4+ site by Cu2+, V4+ and Nb5+ ions. The morphological measurements showed that the addition of (Cu, V) and (Cu, Nb) ions changes the particles’ morphology of BaTiO3, reducing its grains size. After the incorporation of (Cu, V) and (Cu, Nb) ions, the band gap of BaTiO3 was reduced from 3.2 to 2.84 and 2.72 eV, respectively. The modification of BaTiO3 by (Cu, Nb) ions induced superior photocatalytic properties for methyl green and methyl orange with degradation efficiencies of 97% and 94% during 60 and 90 min under sunlight irradiation, respectively. The total organic carbon results indicated that the BaTi0.96Cu0.02Nb0.02O3 catalyst has a high mineralization efficiency. In addition, it possesses a high stability during three cycles. The high photodegradation efficiency of Bi0.96La0.02Gd0.02FeO3 was related to the wide-ranging visible light absorption.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3