Integrating Fermentation Engineering and Organopalladium Chemocatalysis for the Production of Squalene from Biomass-Derived Carbohydrates as the Starting Material

Author:

Wu Cuicui1ORCID,Tian Kaifei1,Guo Xuan1ORCID,Fang Yunming1

Affiliation:

1. National Energy R&D Research Center for Biorefinery, Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

The transition from fossil resources to renewable biomass for the production of valuable chemicals and biobased fuels is a crucial step towards carbon neutrality. Squalene, a valuable chemical extensively used in the energy, healthcare, and pharmaceutical fields, has traditionally been isolated from the liver oils of deep-sea sharks and plant seed oils. In this study, a biochemical synergistic conversion strategy was designed and realized to convert glucose to squalene by combining fermentation technology in yeast with reductive coupling treatment of dienes. First, glucose derived from hydrolysis of cellulose was used as a renewable resource, using genetically engineered Saccharomyces cerevisiae as the initial biocatalyst to produce β-farnesene with a titer of 27.6 g/L in a 2.5 L bioreactor. Subsequently, intermediate β-farnesene was successfully converted to squalene through the organopalladium-catalyzed reductive coupling reaction involving the formation of Pd(0)L2 species. Under mild reaction conditions, impressive β-farnesene conversion (99%) and squalene selectivity (100%) were achieved over the Pd(acac)2 catalyst at a temperature of 75 °C in an ethanol solvent after 5 h. This advancement may provide insights into broadening squalene production channels and accessing the complex skeletons of natural terpenoids from biorenewable carbon sources, offering practical significance and economic benefits.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3