Nitrogen-Doped Nickel Selenium Nanosheets for Highly Efficient Oxygen Evolution Reaction

Author:

Cai Chen1,Gao Cunyuan2,Lin Shuai1,Cai Bin2ORCID

Affiliation:

1. Shandong Institute of Non-Metallic Materials, Jinan 250031, China

2. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Abstract

Transition metal selenides have garnered considerable attention in the field of electrocatalytic oxygen evolution reaction (OER). However, their OER performances still lag behind those of Ir-based materials due to limited exposed active sites, inefficient electron transfer and inadequate stability. In this study, we have successfully synthesized nitrogen-doped NiSe2 nanosheets, which exhibit high efficiency and long-term stability for the OER, requiring only 320 mV to reach a current density of 10 mA cm−2. The nitrogen doping plays a crucial role in effectively regulating the work function and semiconductor characteristics of NiSe2, which facilitates the electron transport and optimizes the catalytic sites. Furthermore, the NiSe2 nanosheets present a larger surface area with more exposed active sites, thus resulting in exceptional OER catalytic activity. The nitrogen-doped NiSe2 nanosheets also display superior stability, maintaining a sustained current density throughout an 8-h OER operation.

Funder

Qilu Young Scholar Start-up Fund of Shandong University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3