Exploring the Methane to Methanol Oxidation over Iron and Copper Sites in Metal–Organic Frameworks

Author:

Tavani Francesco1ORCID,Tofoni Alessandro1ORCID,D’Angelo Paola1ORCID

Affiliation:

1. Department of Chemistry, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy

Abstract

The direct oxidation of methane to methanol (MTM) is a significant challenge in catalysis and holds profound economic implications for the modern chemical industry. Bioinspired metal–organic frameworks (MOFs) with active iron and copper sites have emerged as innovative catalytic platforms capable of facilitating MTM conversion under mild conditions. This review discusses the current state of the art in applying MOFs with iron and copper catalytic centers to effectuate the MTM reaction, with a focus on the diverse spectroscopic techniques employed to uncover the electronic and structural properties of MOF catalysts at a microscopic level. We explore the synthetic strategies employed to incorporate iron and copper sites into various MOF topologies and explore the efficiency and selectivity of the MOFs embedded with iron and copper in acting as catalysts, as well as the ensuing MTM reaction mechanisms based on spectroscopic characterizations supported by theory. In particular, we show how integrating complementary spectroscopic tools that probe varying regions of the electromagnetic spectrum can be exceptionally conducive to achieving a comprehensive understanding of the crucial reaction pathways and intermediates. Finally, we provide a critical perspective on future directions to advance the use of MOFs to accomplish the MTM reaction.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference125 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3