Au-Deposited Ce0.5Zr0.5O2 Nanostructures for Photocatalytic H2 Production under Visible Light

Author:

Al Thabaiti Shaeel Ahmed1,Khan Zaheer1,Al-Thubaiti Khloud Saeed1,Bawaked Salem Mohamed1,Al-Sheheri Soad Zahir1,Mokhtar Mohamed1ORCID,Malik Maqsood Ahmad2ORCID,Narasimharao Katabathini1ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2. Department of Chemistry, Faculty of Sciences, Jamia Millia Islamia, New Delhi 110025, India

Abstract

Pure Ce0.5Zr0.5O2 and Au (0.1–1.0 wt.%)-deposited Ce0.5Zr0.5O2 nanomaterials were synthesized via hydrothermal and non-aqueous precipitation methods using gold acetate as a chloride-free Au precursor. The synthesized nanostructures exhibited enhanced photocatalytic activity for hydrogen production via aqueous bioethanol photoreforming under visible light. Different characterization tools such as powder XRD, HRTEM, FT-IR, DR UV-vis, XPS and N2 gas adsorption were used to analyze the physicochemical properties of the synthesized photocatalysts. The band gap value was lowered from 3.25 eV to 2.86 eV after Au nanoparticles were deposited on the surface of Ce0.5Zr0.5O2. The 1.0 wt.% Au-deposited Ce0.5Zr0.5O2 sample exhibited the highest photocatalytic activity for H2 production (3210 μmol g−1) due to its low band gap, the presence of more oxygen vacancies and its porous character. The EIS results reveal that the deposition of 1.0 wt.% Au nanoparticles is responsible for the highest charge separation efficiency with an increased lifetime of photogenerated e−/h+ species compared to the other samples. In addition, the presence of plasmonic Au is responsible for the effectiveness of the electron trap in improving the rate of H2 formation.

Funder

Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3