Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications

Author:

Torrigino Federica1,Nagel Marcel2,Peng Zhujun1,Hartmann Martin2ORCID,Herkendell Katharina1ORCID

Affiliation:

1. Institute of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Str. 244f, 90429 Nuremberg, Germany

2. Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany

Abstract

Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3