A Novel Synthetic 3D Interconnected Porous Carbon-Rich Graphitic Carbon Nitride for Boosting Visible Light Photocatalytic Hydrogen Production and Dye Contaminant Degradation

Author:

Tian Cunzhang1,Li Chunling2,Zhao Congyue2,Liu Dong2ORCID,He Xinping3

Affiliation:

1. School of Life Science and Technology, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China

2. School of Public Health, Xinxiang Medical University, Xinxiang 453003, China

3. Experimental Teaching Center of Biology and Basic Medicine Sciences, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China

Abstract

The use of photocatalysis to address environmental pollution and energy shortage is an attractive choice. Herein, we successfully synthesized a novel 3D interconnected porous carbon-rich g-C3N4 catalyst via facile thermal polymerization to enhance photocatalytic hydrogen production and photodegradation of dye contaminants. Enhanced hydrogen evolution (1956.23 μmol g−1 h−1) and photocatalytic RhB degradation (96.74%) efficiency were achieved with the as-obtained catalysts. Based on the photocatalytic experimental data and characterization analyses, an enhancement mechanism was proposed. The 3D interconnected porous structure endowed the g-C3N4 with numerous active sites and a large specific surface area, and the carbon modification facilitated the separation and transfer of the photoinduced charge carriers. Nanoshape engineering and the carbon-rich structure showed a synergetic effect in increasing photocatalytic performance. This study offers an applicable methodology for the exploitation of an economical catalyst to alleviate environmental pollution and energy shortages.

Funder

Starting Research Fund of Xinxiang Medical University

Excellent Young Teachers Training Program of Sanquan College of Xinxiang Medical University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3