Affiliation:
1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
2. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract
The creation of junctions between 0D and 2D materials can be an efficient strategy to enhance charge separation for solar hydrogen production. In this study, a simple in situ growth method has been used to synthesize a series of 0D/2D Zn-Ag-In-S quantum dots/reduced graphene oxide (ZAIS QDs/RGO) heterojunctions. The developed heterojunctions were characterized for structural characteristics, morphology, and photocatalytic performance, while varying the content of RGO. We observed that photocatalytic hydrogen production reached a maximum at an RGO content of 30 μL (342.34 µmol g−1 h−1), surpassing that of pure ZAIS QDs (110.38 µmol g−1 h−1) by 3.1 times, while maintaining excellent stability. To understand this enhancement, we performed time-resolved fluorescence and electrochemical impedance spectroscopy. The fluorescence lifetime of RGO loaded at 30 μL (417.76 ns) was significantly higher than that of pure ZAIS QDs (294.10 ns) and had the fastest charge transfer, which can be attributed to the charge transfer and storage capacity of RGO to extend the lifetime of photogenerated carriers and improve the charge separation efficiency. This study offers a simple synthesis method for constructing 0D/2D QDs/RGO heterojunction structures and provides a valuable reference for further enhancing the activity and stability of I-III-VI sulfide QDs.
Funder
National Natural Science Foundation of China
Jiangsu Provincial Excellent Postdoctoral Program
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献