Carbon Monoxide and Propylene Catalytic Oxidation Activity of Noble Metals (M = Pt, Pd, Ag, and Au) Loaded on the Surface of Ce0.875Zr0.125O2 (110)

Author:

Zhang Chenxi12,Cao Xuesong2,Guo Lili1,Fang Zhihao1,Feng Di1,Sun Xiaomin2

Affiliation:

1. Shandong Provincial University Laborator for Protected Horticulture, Weifang University of Science and Technology, Weifang 262700, China

2. Environment Research Institute, Shandong University, Qingdao 266200, China

Abstract

With the advances in engine technology, the exhaust gas temperature of automobiles has further reduced, which in turn leads to an increase in the emissions of carbon monoxide (CO) and hydrocarbons (HCs). In order to understand the influence of CeO2-based catalysts loaded with different noble metals on the catalytic oxidation activity of CO and HCs, this study constructed catalyst models of Ce0.875Zr0.125O2 (100) surfaces loaded with Pt, Pd, Ag, and Au. The electronic density and state density structures of the catalysts were analyzed, and the reaction energy barriers for CO oxidation and C3H6 dehydrogenation oxidation on the catalyst surfaces were also calculated. Furthermore, the activity sequences of the catalysts were explored. The results revealed that after loading Pt, Pd, Ag, and Au atoms onto the catalyst surfaces, these noble metal atoms exhibited strong interactions with the catalyst surfaces, and electron transfer occurred between the noble metal atoms and the catalyst surfaces. Loading with noble metals can enhance the catalytic activity of CO oxidation, but it has little effect on the dehydrogenation oxidation of C3H6. Of the different noble metals, loading with Pd exhibits the best catalytic activity for both CO and C3H6 oxidation. This study elucidated the influence of noble metal doping on the catalytic activity of catalysts at the molecular level, providing theoretical guidance for the design of a new generation of green and efficient catalysts.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shandong Province

Fundamental Research Funds of Weifang University of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3