Affiliation:
1. Shandong Provincial University Laborator for Protected Horticulture, Weifang University of Science and Technology, Weifang 262700, China
2. Environment Research Institute, Shandong University, Qingdao 266200, China
Abstract
With the advances in engine technology, the exhaust gas temperature of automobiles has further reduced, which in turn leads to an increase in the emissions of carbon monoxide (CO) and hydrocarbons (HCs). In order to understand the influence of CeO2-based catalysts loaded with different noble metals on the catalytic oxidation activity of CO and HCs, this study constructed catalyst models of Ce0.875Zr0.125O2 (100) surfaces loaded with Pt, Pd, Ag, and Au. The electronic density and state density structures of the catalysts were analyzed, and the reaction energy barriers for CO oxidation and C3H6 dehydrogenation oxidation on the catalyst surfaces were also calculated. Furthermore, the activity sequences of the catalysts were explored. The results revealed that after loading Pt, Pd, Ag, and Au atoms onto the catalyst surfaces, these noble metal atoms exhibited strong interactions with the catalyst surfaces, and electron transfer occurred between the noble metal atoms and the catalyst surfaces. Loading with noble metals can enhance the catalytic activity of CO oxidation, but it has little effect on the dehydrogenation oxidation of C3H6. Of the different noble metals, loading with Pd exhibits the best catalytic activity for both CO and C3H6 oxidation. This study elucidated the influence of noble metal doping on the catalytic activity of catalysts at the molecular level, providing theoretical guidance for the design of a new generation of green and efficient catalysts.
Funder
National Natural Science Foundation of China
Key Research and Development Project of Shandong Province
Fundamental Research Funds of Weifang University of Science and Technology
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献