Affiliation:
1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Abstract
The photoelectrochemical (PEC) process has been demonstrated to exert enormous potential in the fields of analysis, and the rational design of PEC sensors are vital for practical applications. In this study, Titanium Dioxide Nanoarrays (TDNA) and black phosphorus nanosheets (BPN) were prepared, and a BPN/TDNA composite was proposed as the photoelectrochemical sensing material for the detection of ciprofloxacin (Cip). The formation and excellent optoelectronic properties of BPN/TDNA composite materials have been demonstrated through a series of characterization methods. Moreover, the measurement of PEC properties exhibited that the introduction of BPN and natural light would improve the electron migration efficiency and the separation of photogenerated electron–hole pairs, thereby displaying the synergistic effect to promote photoelectric performance. More importantly, the current density of BPN/TDNA was linearly proportional to the concentration of Cip ranging from 1.14 to 438.86 ng/mL, and the detection limit (3S/N) was 7.56 ng/mL. In addition, such a PEC sensor demonstrated long-term stability, good reproducibility, and selectivity. Finally, the real commercial sample detection was measured to confirm the possibility of practical applications. Thus, the BPN/TDNA photoelectrocatalyst provides a new method for Cip detection with high selectivity and sensitivity.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献