ZnO-Bi2O3 Heterostructured Composite for the Photocatalytic Degradation of Orange 16 Reactive Dye: Synergistic Effect of UV Irradiation and Hydrogen Peroxide

Author:

Shahzad Roeel12,Muneer Majid1,Khalid Rimsha2ORCID,Amin Hatem M. A.34ORCID

Affiliation:

1. Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan

2. Institute of Chemistry, University of Sargodha, Ibne Sina Block, Sargodha 40100, Pakistan

3. Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt

4. Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany

Abstract

The development of semiconductor photocatalysts has recently witnessed notable momentum in the photocatalytic degradation of organic pollutants. ZnO is one of the most widely used photocatalysts; however, its activity is limited by the inefficient absorption of visible light and the fast electron–hole recombination. The incorporation of another metal or semiconductor with ZnO boosts its performance. In this present study, a heterostructured ZnO-Bi2O3 composite was synthesized via a simple co-precipitation method and was investigated for the UV-driven photocatalytic degradation of the Reactive Orange 16 (RO16), a model textile dye. The successful fabrication of ZnO-Bi2O3 microstructures with crystalline nature was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The discoloration of the dye solution was quantified using UV–Vis spectroscopy to determine the photocatalytic efficiency. The photocatalytic activity results demonstrated that the photodegradation at ZnO-Bi2O3 heterojunction was more efficient and 300 and 33% faster than individual Bi2O3 and ZnO catalysts, respectively, an effect that is indicative of a synergistic effect. In the presence of ZnO-Bi2O3 particles, the UV light-driven activity for RO16 degradation was twice as high as in its absence. The influence of adding the oxidant H2O2 on the UV-induced photocatalytic degradation was investigated and the results revealed a two-time increase in the photocatalytic activity of ZnO-Bi2O3 compared to UV irradiation alone, which could be ascribed to a summative degradative effect between UV and H2O2. Hence, this approach holds the potential for environmentally friendly wastewater treatment.

Funder

Government College University Faisalabad

Cairo University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference49 articles.

1. Bhatia, S., and Devraj, S. (2017). Pollution Control in Textile Industry, WPI Publishing.

2. Impact of textile dyes waste on aquatic environments and its treatment;Gita;Environ. Ecol.,2017

3. Textile dyeing industry an environmental hazard;Kant;Nat. Sci.,2012

4. Gold nanoparticles decorated graphene as a high performance sensor for determination of trace hydrazine levels in water;Amin;Electroanalysis,2018

5. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents;Hassan;Chemosphere,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3