The Influence of Seasonality on the Multi-Spectral Image Segmentation for Identification of Abandoned Land

Author:

Tumelienė Eglė,Visockienė Jūratė SužiedelytėORCID,Malienė VidaORCID

Abstract

Areas of agricultural land in Lithuania have decreased from 2005 to 2021 by up to 2.4%. Agricultural lands that are no longer used for their main purpose are very likely to become abandoned and the emergence of such lands can cause a variety of social, economic, and environmental problems. Therefore, it is very important to constantly monitor changes of abandoned agricultural lands. The purpose of the research is to analyse the influence of seasonality on image segmentation for the identification of abandoned land areas. Multi-spectral Sentinel-2 images from different periods (April, July, and September) and three supervised image segmentation methods (Spectral Angle Mapping (SAM), Maximum_Likelihood (ML), and Minimum distance (MD)) were used with the same parameters in this research. Studies had found that the most appropriate time to segment abandoned lands was in September, according to the SAM and ML algorithms. During this period, the intensity of the green colour was the highest and the colour brightness of abandoned lands differed from the colour intensity of other lands.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3