Abstract
Microbial fuel cell (MFC) technology offers an alternative means for producing energy from waste products. In this review, several characteristics of MFC technology that make it revolutionary will be highlighted. First, a brief history presents how bioelectrochemical systems have advanced, ultimately describing the development of microbial fuel cells. Second, the focus is shifted to the attributes that enable MFCs to work efficiently. Next, follows the design of various MFC systems in use including their components and how they are assembled, along with an explanation of how they work. Finally, microbial fuel cell designs and types of main configurations used are presented along with the scalability of the technology for proper application. The present review shows importance of design and elements to reduce energy loss for scaling up the MFC system including the type of electrode, shape of the single reactor, electrical connection method, stack direction, and modulation. These aspects precede making economically applicable large-scale MFCs (over 1 m3 scale) a reality.
Funder
Korea Ministry of Environment
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
169 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献