Abstract
Poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers were synthesized as a positive electrode for high-performance asymmetric supercapacitor (ASC). PVA/PEDOT nanofibers were prepared through electrospinning and electrodeposition meanwhile reduced graphene oxide (rGO) was obtained by electrochemical reduction. The PVA/PEDOT nanofibers demonstrated cauliflower-like morphology showing that PEDOT was uniformly coated on the smooth cross-linking structure of PVA nanofibers. In addition, the ASC showed a remarkable energy output efficiency by delivering specific energy of 21.45 Wh·kg−1 at a specific power of 335.50 W·kg−1 with good cyclability performance (83% capacitance retained) after 5000 CV cycles. The outstanding supercapacitive performance is contributed from the synergistic effects of both PVA/PEDOT//rGO, which gives promising materials for designing high-performance supercapacitor applications.
Funder
Universiti Putra Malaysia
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献