Analysis of Thermodynamic Models for Simulation and Optimisation of Organic Rankine Cycles

Author:

Durakovic ,Skaugen

Abstract

Equations of state (EOSs) form the base of every thermodynamic model used in the design of industrial processes, but little work has been done to evaluate these in the context of such models. This work evaluates 13 EOSs for their accuracy, computational time and robustness when used in an in-house optimisation program that finds the maximum power output of an organic Rankine cycle. The EOSs represent popular choices in the industry, such as the simple cubic EOSs, and more complex EOSs such as the ones based on corresponding state principles (CSP). These results were compared with results from using the Groupe Européen de Recherches Gazières (GERG) EOS, whose error is within experimental uncertainty. It appears that the corresponding state EOSs find a solution to the optimisation problem notably faster than GERG without significant loss of accuracy. A corresponding state method which used the Peng–Robinson EOS to calculate the shape factors and a highly accurate EOS for propane as the reference EOS, was shown to have a total deviation of just 0.6% as compared to GERG while also being 10 times as fast. The CSP implementation was also more robust, being able to converge successfully more often.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3