Abstract
This paper aims to present a general and effective analytical approach to calculate the air gap flux density and the back electromotive force (EMF) of a flux-switching permanent magnet (FSPM) machine. The proposed analytical expression of the air gap flux density is based on an improved air gap permeance function considering the geometries of slotted stator core pieces and magnets between stator teeth as well as the salient rotor poles. The back EMF equation is accurately derived using the proposed air gap flux density equation expressed in terms of practical machine dimensions and thus it provides the key design factors as well as details of the back EMF production mechanism. To validate the proposed analytical expressions, they are applied to the case study of a 12-slot 10-pole FSPM machine, and the finite element analysis results confirm the analytical predictions. Besides, for the proposed analytical model, the effects of the machine’s geometries on back EMF characteristics are investigated. The investigation shows that the ratio of rotor slot opening to slot pitch has a significant effect on the back EMF, and its optimal value is suggested. The proposed equations also provide a mean to choose the slot and pole combinations to obtain a higher power density.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献