Electromagnetic Analysis and Performance Investigation of a Flux-Switching Permanent Magnet Machine

Author:

Azeem ,Kim ORCID

Abstract

This paper aims to present a general and effective analytical approach to calculate the air gap flux density and the back electromotive force (EMF) of a flux-switching permanent magnet (FSPM) machine. The proposed analytical expression of the air gap flux density is based on an improved air gap permeance function considering the geometries of slotted stator core pieces and magnets between stator teeth as well as the salient rotor poles. The back EMF equation is accurately derived using the proposed air gap flux density equation expressed in terms of practical machine dimensions and thus it provides the key design factors as well as details of the back EMF production mechanism. To validate the proposed analytical expressions, they are applied to the case study of a 12-slot 10-pole FSPM machine, and the finite element analysis results confirm the analytical predictions. Besides, for the proposed analytical model, the effects of the machine’s geometries on back EMF characteristics are investigated. The investigation shows that the ratio of rotor slot opening to slot pitch has a significant effect on the back EMF, and its optimal value is suggested. The proposed equations also provide a mean to choose the slot and pole combinations to obtain a higher power density.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference15 articles.

1. Design Principles of flux-switch Alternators;Rauch;AIEE Trans.,1955

2. Switching flux permanent magnet polyphased machines;Hoang;Eur. Conf. Power Electron. Appl.,1997

3. Winding Configurations and Optimal Stator and Rotor Pole Combination of Flux-Switching PM Brushless AC Machines

4. Performance Improvement in Flux-Switching PM Machines Using Flux Diverters

5. Advanced Flux-Switching Permanent Magnet Brushless Machines

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3