Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor

Author:

Singh SaurabhORCID,Sahoo Rakesh K.ORCID,Shinde Nanasaheb M.,Yun Je Moon,Mane Rajaram S.ORCID,Kim Kwang Ho

Abstract

In this work, we report the synthesis of a Bi2O3-MnO2 nanocomposite as an electrochemical supercapacitor (ES) electrode via a simple, low-cost, eco-friendly, and low-temperature solid-state chemical process followed by air annealing. This as-synthesized nanocomposite was initially examined in terms of its structure, morphology, phase purity, and surface area using different analytical techniques and thereafter subjected to electrochemical measurements. Its electrochemical performance demonstrated excellent supercapacitive properties in a wide potential window. Its specific capacitance was able to reach 161 F g−1 at a current density of 1A g−1 and then showed a superior rate capability up to 10 A g−1. Furthermore, it demonstrated promising cycling stability at 5 A g−1 with 95% retention even after 10,000 charge–discharge cycles in a wide potential window of 1.3 V, evidencing the synergistic impact of both Bi2O3 and MnO2 in the Bi2O3-MnO2 ES electrode. Additionally, the practical reliability of the envisioned electrode was ascertained by the fabrication of a symmetric Bi2O3-MnO2//Bi2O3-MnO2 pencil-type supercapacitor device that displayed an energy density of 18.4 Wh kg−1 at a power density of 600 W kg−1 and a substantial cyclic stability up to 5000 cycles. Subsequently, an LED was also powered at its full brightness using three of these devices connected in series in order to demonstrate the real-time application of the Bi2O3-MnO2 ES electrode.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3