Assessment of the Carbon and Cost Savings of a Combined Diesel Generator, Solar Photovoltaic, and Flywheel Energy Storage Islanded Grid System

Author:

Amiryar ,Pullen

Abstract

The use of diesel generators to provide power for islanded grids has been the technology of choice but they generate substantial carbon emissions unless the part or all the fuel comes from a renewable source. Notwithstanding this, the engine must be sized to meet maximum demand and will operate inefficiently at part load most of the time, which is particularly bad for a synchronous constant speed engine. Given the availability of low cost solar photovoltaic (PV) systems, it is very enticing to fit a diesel generator and allow the engine to be turned off during PV generation. However, this combination will not work without some form of energy storage since it takes time for the engine to start, leading to gaps in supply and instability of the system. Lithium-ion batteries are typically considered to be the best solution to this problem because they have a high response rate, costs are lower, and they are available as products. However, they will suffer from the limited cycle and calendar life due to high cycling requirements in the application described. It is, therefore, proposed that a flywheel system could offer a lower lifetime cost alternative since only short duration bridging power storage is needed and flywheels of appropriate design can offer lower power cost than Lithium-ion battery systems. Flywheels are particularly attractive since they have a very high calendar with almost an infinite cycle life and are fully recyclable at the end of life. This research, therefore, presents an assessment of the flywheel energy storage system (FESS) as an alternative to electrochemical batteries to supplement solar PV systems backed up by diesel generators. The model of an islanded PV system combined with a diesel generator and a FESS supplying power to a residential load is implemented in MATLAB/Simulink. The results of the analysis for the cases with and without storage based on a number of different charge-discharge strategies provide evidence to support this hypothesis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Progress in electrical energy storage system: A critical review

2. Overview of current and future energy storage technologies for electric power applications

3. The value of electricity storage in domestic homes: a smart grid perspective

4. DG ENER Working Paper; The Future Role and Challenges of Energy Storagehttps://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf

5. The Role of Energy Storage in a Microgrid Concept: Examining the Opportunities and Promise of Microgridshttps://ieeexplore.ieee.org/document/6749070

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3