Compression–Expansion Processes for Chemical Energy Storage: Thermodynamic Optimization for Methane, Ethane and Hydrogen

Author:

Atakan BurakORCID

Abstract

Several methods for chemical energy storage have been discussed recently in the context of fluctuating energy sources, such as wind and solar energy conversion. Here a compression–expansion process, as also used in piston engines or compressors, is investigated to evaluate its potential for the conversion of mechanical energy to chemical energy, or more correctly, exergy. A thermodynamically limiting adiabatic compression–chemical equilibration–expansion cycle is modeled and optimized for the amount of stored energy with realistic parameter bounds of initial temperature, pressure, compression ratio and composition. As an example of the method, initial mixture compositions of methane, ethane, hydrogen and argon are optimized and the results discussed. In addition to the stored exergy, the main products (acetylene, benzene, and hydrogen) and exergetic losses of this thermodynamically limiting cycle are also analyzed, and the volumetric and specific work are discussed as objective functions. It was found that the optimal mixtures are binary methane argon mixtures with high argon content. The predicted exergy losses due to chemical equilibration are generally below 10%, and the chemical exergy of the initial mixture can be increased or chemically up-converted due to the work input by approximately 11% in such a thermodynamically limiting process, which appears promising.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3