Measuring the Risk of Supply and Demand Imbalance at the Monthly to Seasonal Scale in France

Author:

Alonzo Bastien,Drobinski Philippe,Plougonven RiwalORCID,Tankov Peter

Abstract

Transmission system operator (TSOs) need to project the system state at the seasonal scale to evaluate the risk of supply-demand imbalance for the season to come. Seasonal planning of the electricity system is currently mainly adressed using climatological approach to handle variability of consumption and production. Our study addresses the need for quantitative measures of the risk of supply-demand imbalance, exploring the use of sub-seasonal to seasonal forecasts which have hitherto not been exploited for this purpose. In this study, the risk of supply-demand imbalance is defined using exclusively the wind energy production and the consumption peak at 7 pm. To forecast the risks of supply-demand imbalance at monthly to seasonal time horizons, a statistical model is developed to reconstruct the joint probability of consumption and production. It is based on a the conditional probability of production and consumption with respect to indexes obtained from a linear regression of principal components of large-scale atmospheric predictors. By integrating the joint probability of consumption and production over different areas, we define two kind of risk measures: one quantifies the probablity of deviating from the climatological means, while the other, which is the value at risk at 95% confidence level (VaR95) of the difference between consumption and production, quantifies extreme risks of imbalance. In the first case, the reconstructed risk accurately reproduces the actual risk with over 0.80 correlation in time, and a hit rate around 70–80%. In the second case, we find a mean absolute error (MAE) between the reconstructed and real extreme risk of 2.5 to 2.8 GW, a coefficient of variation of the root mean square error (CV-RMSE) of 3.8% to 4.2% of the mean actual VaR95 and a correlation of 0.69 and 0.66 for winter and fall, respectively. By applying our model to ensemble forecasts performed with a numerical weather prediction model, we show that forecasted risk measures up to 1 month horizon can outperform the climatology often used as the reference forecast (time correlation with actual risk ranging between 0.54 and 0.82). At seasonal time horizon (3 months), our forecasts seem to tend to the climatology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. RTE, Bilan électricique,2017

2. WindEurope, Wind Energy in Europe: Scenarios for 2030,2017

3. Alain Burtin and Vera Silva, Technical and Economic Analysis of the European Electricity System with 60% RES; EDF R&D Report; 2015 https://www.edf.fr/sites/default/files/Lot%203/CHERCHEURS/Portrait%20de%20chercheurs/summarystudyres.pdf

4. ENTSOE, Winter Outlook Report—2016,2016

5. RTE, Annual Electricity Report—2016,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3