Sliding Mode Control for Micro Turbojet Engine Using Turbofan Power Ratio as Control Law

Author:

Derbel Khaoula,Beneda KárolyORCID

Abstract

The interest in turbojet engines was emerging in the past years due to their simplicity. The purpose of this article is to investigate sliding mode control (SMC) for a micro turbojet engine based on an unconventional compound thermodynamic parameter called Turbofan Power Ratio (TPR) and prove its advantage over traditional linear methods and thrust parameters. Based on previous research by the authors, TPR can be applied to single stream turbojet engines as it varies proportionally to thrust, thus it is suitable as control law. The turbojet is modeled by a linear, parameter-varying structure, and variable structure sliding mode control has been selected to control the system, as it offers excellent disturbance rejection and provides robustness against discrepancies between mathematical model and real plant as well. Both model and control system have been created in MATLAB® Simulink®, data from real measurement have been taken to evaluate control system performance. The same assessment is conducted with conventional Proportional-Integral-Derivative (PID) controllers and showed the superiority of SMC, furthermore TPR computation using turbine discharge temperature was proven. Based on the results of the simulation, a controller layout is proposed and its feasibility is investigated. The utilization of TPR results in more accurate thrust output, meanwhile it allows better insight into the thermodynamic process of the engine, hence it carries an additional diagnostic possibility.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3