Abstract
Ultra-short-term electrical load forecasting is an important guarantee for the safety and efficiency of energy system operation. Temperature is also an important factor affecting the changes in electric load. However, in different cases, the impact of temperature on load forecasting will vary greatly, and sometimes even lead to the decrease of forecasting accuracy. This often brings great difficulties to researchers’ work. In order to make more scientific use of temperature factor for ultra-short-term electrical load forecasting, especially to avoid the negative influence of temperature on load forecasting, in this paper we propose an ultra-short-term electrical load forecasting method based on temperature factor weight and long short-term memory model. The proposed method evaluates the importance of the current prediction task’s temperature based on the change magnitude of the recent load and the correlation between temperature and load, and therefore the negative impacts of the temperature model can be avoided. The mean absolute percentage error of proposed method is decreased by 1.24%, 1.86%, and 6.21% compared with traditional long short-term memory model, back-propagation neural network, and gray model on average, respectively. The experimental results demonstrate that this method has obvious advantages in prediction accuracy and generalization ability.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference38 articles.
1. Probabilistic electric load forecasting: A tutorial review
2. Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response
3. The Application of Improved Grey GM(1,1) Model in Power System Load Forecast;Jia;Future Wirel. Netw. Inf. Syst.,2011
4. Power Load Forecasting Based on Fractional GM(1,1) and BP Neural Network;Liu;Math. Pract. Theory,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献