Development of Optimal Design Method for Ground-Source Heat-Pump System Using Particle Swarm Optimization

Author:

Moon Hyeongjin,Jeon Jae-Young,Nam Yujin

Abstract

The building sector is an energy-consuming sector, and the development of zero-energy buildings (ZEBs) is necessary to address this. A ZEB’s active components include a system that utilizes renewable energy. There is a heat-pump system using geothermal energy. The system is available regardless of weather conditions and time, and it has attracted attention as a high-performance energy system due to its stability and efficiency. However, initial investment costs are higher than other renewable energy sources. To solve this problem, design optimization for the capacity of geothermal heat-pump systems should be performed. In this study, a capacity optimization design of a geothermal heat-pump system was carried out according to building load pattern, and emphasis was placed on cost aspects. Building load patterns were modeled into hospitals, schools, and apartments, and, as a result of optimization, the total cost over 20 years in all building load patterns was reduced.

Funder

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. World Energy Market Insight,2017

2. World Energy Market Insight,2019

3. World Energy Issue Insight,2018

4. Renewable Energy 3020 Planhttp://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2018/02/Implementation-plans-for-renewable-20-by-2030.pdf

5. http://www.energy.or.kr/web/kem_home_new/new_energy/RPS_01.asp

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3